Введение

В механической обработке с широким использованием средств автоматизации, в связи с быстрым развитием автоматического оборудования, требованием высокого уровня точности и широким использованием труднообрабатываемых материалов, поломка инструментов, резцов в заготовке значительно обуславливает коэффициент годной продукции.

Портативный сверхмощный электроэрозионный станок EDM-8C, сможет легко и быстро удалить метчик, сверло, развёртку, винт, болт, шпоку и т.п., сломанных в заготовке, без повреждения; он может выполнять обработку в заготовках любого размера, любой формы, особенно подходит для больших заготовок, труднообрабатываемых электроэрозионным станком. Конструкция этой установки оснащена ящиком для хранения принадлежностей в нижней части корпуса, что позволяет удобно использовать рабочие принадлежности. Установка имеет эффективную скорость обработки, что позволяет легко удалить метчик, болт, пометки обработки большого размера.

Видео-вход эксплуатации

Портативный электроэрозионный станок Таблица параметров EDM-8C

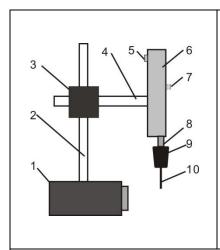
Входное напряжение (В)	АС220В (110В) 50Гц (определяется в зависимости от региона)	
Входная мощность (Вт)	800	
Выходное напряжение (V)	DC75-80V	
Диэлектрическая среда	Водопроводная вода	
Диаметра электрода (ММ)	0.8-10	
Ход по оси Z (мм)	70	
Скорость обработки мелкого отверстия (мм/мин)	pprox 1 Электрод $ ot\!\!\!/ 0$ 4	
Размер корпуса(ММ)	Д 380 ×Ш160 ×В300	
Размер головки (ММ)	ZK8 300×50×50	
Размер комплекта (ММ)	498×308×392	
Нетто вес (КГ)	15	

Часть 1. Функции и особенности

- 1. Портативный электроэрозионный станок EDM-8C использует принцип электрической эрозии для удаления сломанных метчиков в заготовках, таких как сверло и т.п.. Используется метод бесконтактной обработки, во время обработки заготовка не находится под давлением, таким образом, заготовку сложно повредить.
- 2. Удобная конструкция: портативность благодаря небольшому размеру и легкому весу; уникальные преимущества во время обработки больших заготовок; рабочая головка и основной корпус имеют раздельную конструкцию, головка может вращаться в любом направлении, что облегчает сложную обработку разного вида.
- 3. Удобен для переноски: основной корпус имеет легкий вес, малый размер, ручку для удобства переноски в верхней части корпуса.
- 4. Удобство выполнения операций: портативный эрозионный аппарат применяет магнитное основание, таким образом, он может быть собран на заготовке для обработки, что облегчает установку, зажим и выполнение операции.
- 5. Точное позиционирование: при использовании в сочетании с настольным набором или алюминиевым столом, установка и зажим заготовок быстрые, и позиционирование точное, поэтому прибор может быть использован для обработки небольшого количества заготовок.
- 6. Простота технического обслуживания: используется однокристальный контроллер и модульная конструкция,

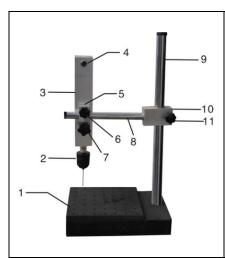
поэтому прибор имеет стабильные характеристики, техническое обслуживание удобное и простое.

- 7. Экономичность и удобство: в процессе электрической эрозии в качестве рабочей жидкости (также известной как среда) применяется обычная водопроводная или очищенная вода, расход электроэнергии является умеренным. Используется съемная входная труба, что облегчает хранение аппарата.
- 8. Широкий диапазон обработки: остатки сломанных проводящих материалов, таких как метчик, сверло и т.п. диаметром 2мм и выше.
- 9. Длительное время работы: аппарат оснащен охлаждающим вентилятором, который выполняет принудительную вентиляцию, что обеспечивает долговременную непрерывную работу.


Часть 2. Конструкция электроэрозионного аппарата

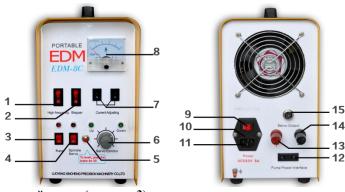
Основной корпус: EDM-8C.

Рабочая часть: головка, магнитное основание, комплекснастольного набора (дополнительно), алюминиевый рабочий стол(дополнительно).


Вспомогательные устройства: провод питания, высокочастотный провод, контрольный провод, водопроводные трубы, магнитные внешние трубы подачи воды, патрон электрода и т.п..

Расходные материалы: латунная трубка электрода, латунный электродный стержень, латунный электродный лист.

- 1. Фланцевое основание магнитометра
- 2. Удлиненный стержень
- 3. Алюминиевый крестообразный коннектор
- 4. Рычаг
- 5. Входной интерфейс сервопривода шпинделя
- 6. Блок шпинделя
- 7. Блокирующий винт определенной глубины
- 8. Шкала глубины
- 9. Зажим электрода (зажим сверла)
- 10. Электрод


Головка (рисунок 1)

- 1. Мраморный постамент
- 2. Зажим электрода
- 3. Блок шпинделя
- 4. Входной интерфейс сервопривода шпинделя
- 5. Соединительный блок головки
- 6,7,11. Блокирующий винт
- 8. Рычаг
- 9. Подъемная стрелка
- 10. Крестообразный коннектор Примечание: настольный набор Стандартная конфигурация: защитный кожух из закаленного стекла

Тел.: 8-800-250-61-44

Дополнительный выбор: настольный набор (рисунок 2)

Основной корпус(рисунок 3)

- 1. Переключатель высокой частоты 2. Шаговый переключатель
- 3.Переключатель водонасоса 4. Переключатель сервопривода
- 5. Кнопка возврата 6. Кнопка управления сервопривода 7. Кнопка регулировки тока 8. Амперметр 9. Генеральный переключатель питания 10. Предохранитель-трубка11. Разъем генерального питания 12. Питания насоса 13. Клемма высокочастотного полюжительного полюжа 14. Клемма высокочастотного отрицательного полюса 15. Сервоконстроль

Часть 3. Инструкция по эксплуатации

- 1. Шаги установки:
- 1.1 Сборка рабочей части
- (1) Разместить рабочую часть в нужном месте в соответствии с потребностями, расположить основание магнитометра на плоской рабочей поверхности, чтобы обеспечить устойчивость, включить магнитный переключатель основания магнитометра;
- (2) Ослабить зажимной винт крестообразного коннектора, отрегулировать положение головки, чтобы сохранить зазор между концом электрода и заготовкой в диапазон 1-3 мм.

- 1.2 Подключение питания и соединение приводов
- (1) Подключить провод высокочастотного питания и контрольный разъем сервоуправления, соответственно, ко клеммам №13, №14 панели основного корпуса и к интерфейсу №15, и закрепить их.

Примечание: высокочастотный провод питания и клемма соединяются согласно цветовой разметке: красный (+), голубой (-).

- (2) Вставить разъем провода питания в гнездо питания №11, другой конец подключить к блоку питания; обеспечить надежное заземление корпуса.
- (3) Подключить выходной конец высокочастотного питания, положительный полюс зажима крокодила красного цвета подключить к заготовке, а другой провод с отрицательным полюсом подключить к шпинделю патроном электрода.

1.3 Подключение трубы промывки:

Внешний водонасос, поставляемый вместе с аппаратом, разместить в положение обработки после подключения отверстия водовыпуска к универсальной головке, чтобы нацелить отверстие водовыпуска на точку обработки. Отверстие водовыпуска с фильтром помещается в бак воды, чтобы убедиться, что насос был погружен в жидкость.

- 2. Шаги обработки:
- 2.1 Включить переключатель питания №9, отрегулировать положение и высоту шпинделя, обратить внимание на соосность электрода и сломанного предмета, чтобы избежать повреждения заготовок.
 - 2.2 После регулировки положения нажать клавишу

водонасоса №3, когда вода потечет из трубы, нажать кнопку высокой частоты №1, кнопку сервопривода №4 последовательно. Повернуть кнопку управления сервопривода №6 по часовой стрелке вправо на шкалу к средней линии, индикатор «вниз» мигает, шпиндель начинает спускаться, электрод идет близко к заготовке, индикатор «вверх» и «вниз» мигают попеременно, и начинается обработка.

2.3 По необходимости в течение обработки, отрегулировать подходящее положение тока, кнопку управления сервопривода №6 и скорость потока воды вовремя, чтобы ток обработки стабильно, тогда эффективность лучшая.

3. Использование кнопки возврата

Когда обработка головкой достигнет заданной глубины, шпиндель запустит концевой выключатель и автоматически вернется. Раздастся звуковой сигнал. Если нажать кнопку возврата, то шпиндель восстановит статус обработки, и звуковой сигнал прекратится.

Когда шпиндель вернется к верхнему пределу и остановится, а звуковой сигнал не прекратится, тогда можно нажать кнопку возврата и удерживать ее в течение более 3 сек., этим можно вернуться в состояние обработки.

- 4. Шаги остановки:
- 4.1 Выключить кнопку высокой частоты №1.
- 4.2 Повернуть кнопку управления сервопривода №6 против часовой стрелки, чтоб индикатор «вверх» мигает, шпиндель поднимается, выключить переключатель сервопривода №4 когда электрод отойдет от изделия, выключить переключатель водонасоса №3.

4.3 Выключить генеральный переключатель питания №9.

Часть 4. Неисправности и методы устранения неисправностей

Неисправность	Причина и метод устранения неисправности
После включения, шпиндель не вращается	1. Кабель двигателя не подключен. Заново вставить разъем. 2. Скользящая втулка шпинделя перемещается до верхнего предела, и тронет концевой выключатель. После включения нажать и удержать кнопку возврата в течение 2-3 сек, чтобы головка восстановила в статус обработки. 3. Отказ сервоконтроллера. Свяжитесь с компанией.
Электрод не разрядит после контакта с заготовкой	1. Линия электропередачи высокой частоты не подключен или не подключен надежно. Подключение к высокочастотной шнура питания. 2. Отказ высокочастотной мощности. Свяжитесь со мной компанию.

Реальная глубина обработки небольшая, а потеря электрода слишком большая	1. Неправильное подключение полюса провода высокочастотного питания. Отрегулировать полярность высокочастотного провода. 2. Неправильные параметры обработки. Заново регулировать параметры обработки. 3. Слишком малый диаметр электрода, а слишком большой ток. Регулировать регулировочный переключатель тока, уменьшить тока обработки, регулировать серворучку.
Возникает дуга во время обработки	1 .Выбор подпозиции не подходящий, при диаметре электрода ниже Ф6тт, выключить подпозицию. 2.Регулировка ручки регулировки тока слишком велика, регулировать подходящий ток.
Обработка нестабильная, стрелки амперметра качели, амплитуда калебания является относительно большой	1. Серво скорость неподходящая. Регулировать серворучку. 2. Зажим заготовки или электрода не надежный. Заново положить заготовку, надежно зажимать электрод. 3. Водня среда отклоняется от зоны обработки, подача жидкости недостаточная. Регулировать положение трубу для промывки. 4. При обработке до определенной глубины, электрод колебается слишком сильно, это вызывает нестабильный разряд. Вернуть головку, а затем заново обработать, регулировать положение заготовки, заменить электрод и сохранять линейную подачу электрода при обработке.

Часть 5. Выбор материала электрода и рабочей жидкости (среды)

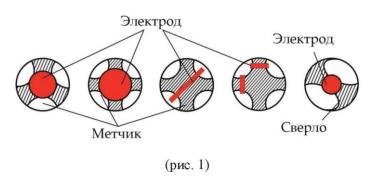
Для инструментальных электродов, как для разрядных материалов обработки, как правило, применяют материалы с высокой проводимостью, высокой температурой плавления, стойкостью к электрокоррозии, легко обрабатываемые, такие как медь, графит, медь-вольфрамовый сплав. В нормальных условиях для удаления сломанного метчика и других сломанных предметов лучше выбрать латунный материал, он поможет добиться наилучшего результата.

Рабочая жидкость как среда разряда в процессе обработки играет роль охлаждения, удаления шлака и т.п. Поэтому часто используется среда с низкой вязкостью, относительно высокой температурой вспышки, стабильными характеристиками, такая как чистая вода, керосин и т.д. Для обработки алюминиевых заготовок керосин может быть использован в качестве рабочей жидкости, чтобы предотвратить окисление алюминия; для заготовок, следует выбрать чистую железных, стальных водопроводную В целях достижения наилучшего воду результата использования.

Часть 6. Выбор структуры и размера электрода

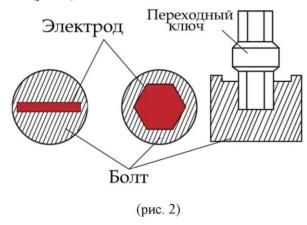
Площадь разряда электрода, как правило, больше, чем собственный диаметр на 0,3мм, например, если диаметр электрода составляет 03мм, то обработанный диаметр составляет около 03.3мм. При выборе размере электрода следует рассмотреть площадь разряда электрода, выбор осуществляется в зависимости от реальной ситуации обработки, чтобы избежать

повреждения резьбы.


Часто используемые размеры электрода для удаления сломанных предметов приведены в таблице ниже:

Сломанный предмет	Спецификация	Рекомендуемый электрод (тш)	Примечание
Метчик	M3	ф1.5	Электрод должен быть коротким по возможности, и надо избежать вибрации
Метчик	M4	ф2.0	
Метчик	M6	ф3.0	
Метчик	M8	ф4.0	
Метчик	M10	ф5.0	
Метчик	M12	ф6.0	
Метчик	M14	7X2	Листовой электрод
Метчик	M16	8X2	
Метчик	M20-30	10X2 Листовой электрод	Для метчика М20 и выше, можно обработать его по нескольким разам
Винт	M3-20	Рекомендуемый метод: сделать — -образный глубокий паз, ∆ -образное, □-образное и шестигранное отверстие, удалить его с помощью комплектующего инструмента.	

Таблица выбора размера электрода


Часть 7. Как удалить сломанный метчик, сверло, винт и другие сломанные инструменты.

Общей особенностью метчика, сверла и других инструментов является сплошная центральная часть, поэтому можно раздробить центральную сплошную часть, чтобы удалить метчик, сверло. Необходимо сделать подготовку перед обработкой, удалить ржавчину, оксидный слой и т.п.; при обработке заготовок в глубоком пазе, отверстии с зенковкой можно выбрать полый электрод, насос высокого давления, чтобы увеличить скорость дренажа. (рис. 1)

Если диаметр болта слишком большой или уровень прочности выше >8.8, обычный метод обработки не подходит. В таком случае можно сделать один паз глубиной 2-3мм с помощью листового электрода, а затем удалить болт с помощью отвертки или сделать паз с помощью шестигранного электрода, а затем удалить болт с помощью шестигранного ключа; если положение слишком глубокое, обычный аппарат, предназначенный для удаления сломанного винта, не войдёт в отверстие, в таком случае можно использовать переходный

шестигранный гаечный ключ, чтобы удалить его из глубокого отверстия. (рис. 2)

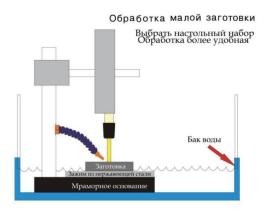
Часть 8. Пользование переключателя шаговой и регулировки тока

Площадь поперечного сечения электрода	Кнопки регулировки тока	Шаговый переключатель
<1mm ²	оба выкл. (низ.)	Выкл.
1-3 _{MM} ²	1 вкл., 1 выкл. (сред.)	Вкл.
>3mm ²	оба вкл. (выс.)	Вкл.

14

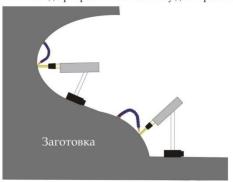
Часть 9. Как зажимать электрод, чтобы предотвратить электрическую травму?

В электроэрозионной обработке, как правило, отрицательный полюс (синяя линия) подключен к электроду инструмента, положительный полюс (красная линия) подключен к заготовке. Такой метод позволяет уменьшить потери электрода инструмента и шероховатость поверхности обработки.


В связи с небольшим зазором между зажимами или клеммами и заготовкой, заготовки могут быть повреждены разрядом при подключении. Чтобы избежать этого, при подключении можно выбрать резьбовое отверстие рядом с областью обработки, ввинтить винт, или выбрать гладкое отверстие для установки штифта, а затем держать винт, штифт зажимом, или выбрать незначительную часть для зажима, чтобы избежать повреждения заготовок разрядом зазора. Расстояние зажима между положительным и отрицательным полюсами должно быть как можно меньше, чтобы уменьшить потерю тока в ходе передачи. Прочное размещение и фиксирование заготовки, нацеливание электрода на ось обработки являются важными факторами для обеспечения качества обработки.

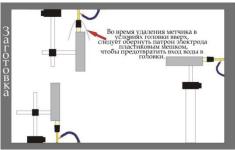
Часть 10. Схема методов обработки электроэрозионного аппарата

Портативный электроэрозионный аппарат использует магнитное основание и крестообразную опорную раму для поддержания головки, так что головка может быть размещена в любом положении, что позволяет регулировать направление обработки, подходит для обработки заготовок разных размеров. На следующих рисунках показаны схемы обработки



При вертикальной обработке большой заготовки опорная рама устанавливается непосредственно на заготовку. Под головкой создается направляющий желоб, чтобы охлаждающая жидкость могла течь наружу.

Используйте настольный набор, чтобы фиксировать заготовки. Это подходит для обработки малых заготовок. Во время работы разместите рабочий стол в баке воды, чтобы избежать потери охлаждающей жидкости.


Обработка сверхбольшой заготовки Можно адсорбироваться на заготовку для обработки

Для крупногабаритных заготовок аппарат может быть установлен непосредственно на обрабатываемой поверхности.

Положение головки может быть отрегулировано в соответствии с потребностями.

Обработка сверхбольшой заготовки Можно притягивать на заготовку для обработки

Для обработки внутренней стенки большой заготовки головка может устанавливаться на боковой стороне заготовки. При поперечной обработке следует обратить особое внимание на водоизоляцию головки.

Гарантийное обслуживание

В связи с девизом компании «Высокое качество, отличный сервис, стремление к развитию» и концепцией компании «Качественная продукция, льготные цены, продуманный сервис» мы отвтственно обещаем:

- 1. Вся продукция на заводе проходит строгую проверку, чтобы гарантировать заявленное качество товаров.
- 2. Гарантийный период составляет один год, и если в течение этого времени возникнут какие-либо технические проблемы, мы бесплатно осуществим ремонт и будем нести расходы по обслуживанию и замене запчастей.
- 3. Мы предоставляем бесплатный ремонт только в том случае, когда повреждения вызваны дефектом самой продукции. Не осуществляется бесплатный ремонт, требуемый вследствие человеческих ошибок, а именно в результате повреждения аппарата из-за неправильной эксплуатации.
- 4. Датой покупки товара считается дата выписки счёт-фактуры (если нет счёт-фактуры, это зависит от даты производства продукции).
- 5. Если производство данной модели прекращено, мы делаем только функциональный ремонт.
- 6. Обслуживание не распространяется на магнитную подушку, водяной насос, универсальный водопровод, чак электрода и т д.

Случаи отказа от гарантийного ремонта:

1. Неисправность аппарата, вызванная неправильной эксплуатацией.

- 2. Поломка в результате неверного хранения аппарата или стихийного бедствия.
- 3. Поломка как следствие демонтажа, ремонта или модифицирования аппарата без согласия нашей компании.

Примечание: наша компания оставляет за собой право принятия окончательного решения по гарантийному ремонту.